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Abstract 
Much effort has been expended over the years to mitigate the effects of ASF on Loran position 
accuracy; primarily by trying to estimate the ASF (per Loran signal) and remove it before 
implementing the Loran position solution. This paper considers ASF estimation appropriate for 
the harbor entrance and approach application. The current thinking in the Loran research 
community is that the tight error requirement for this application demands the use of dense ASF 
grids on the harbor area.  Here, we show the results of ASF data collection in New York harbor 
during 2006 and methods for developing ASF grids capable of meeting the HEA accuracy 
requirement.  

Introduction 
The position solution available from the standard Loran system, while highly repeatable, suffers 
from poor absolute accuracy, particularly when compared to GPS. The primary reason for this is 
something called Additional Secondary Factors (ASFs) which are additional time delays in the 
propagation of the Loran signal between the Loran station and the user’s receiver over that 
experienced along an all seawater path [1]. Common causes of ASFs include varying ground 
conductivity, topography, and weather. For the application of Harbor Entrance and Approach 
(HEA), these ASFs are particularly bothersome due to the tight accuracy requirements desired 
(under 20 meters position error, 2 sigma variation).  

The current thinking in the Loran research community is that Enhanced Loran (e-Loran) will 
achieve this required level of position accuracy by removing the ASFs from the Loran signal 
time-of-arrival data before the position solution. Typically, we think of the ASF as consisting of 
two components:  

• a temporal term (possibly with strong diurnal and seasonal characteristics) – it is 
envisioned that this component (or at least a large part of it) is removed by subtracting 
out the equivalent temporal term measured at a nearby Loran monitor site and broadcast 
over the Loran Data Channel (LDC). Current research issues on this approach include the 
correlation distance of the monitor site, methods for “smoothing” the ASF measurements 
at the monitors, and how to combine temporal terms from multiple monitors (see our 
companion paper in this proceedings, [2]). 

• a spatial term – it is envisioned that this component is tabulated as an ASF “grid” that is 
interpolated (possibly in a bootstrapping, iterative way as discussed in [3]) to identify the 
value for removal. 

The methodology necessary to generate this ASF grid is, then, a primary issue for HEA 
navigation; and it is the subject of this paper. We begin with a review of a recent ASF data 
collection effort in New York harbor during 2006; this consists of both static (receiver held fixed 
in location) and dynamic (receiver moving) data. We review the processing of this data to yield 



valid ASF values. We then examine various approaches to generating the ASF grids, including a 
review of our previous efforts.  

Data Collection in NY Harbor 
During 2006 we twice collected Loran data in New York harbor. In both cases a vessel was 
equipped with our standard “data collection” unit consisting of a Loran receiver (outputting 
TOAs for all observable Loran stations), a GPS receiver (to provide position truth), a stable clock 
(for precise time referencing), and a laptop PC for logging data. The first collection effort 
employed both a ship and the FAA test van (shown in Figure 1); the second collection effort was 
by ship only (shown in Figure 2).  

     

Figure 1 – Data collection ship (Launch #5) and van. 

 

Figure 2 – Vessel used in Phase II data collection, the Jeanne II. 

To collect reference data (so as to be able to subtract any temporal variation in the ASFs), we 
simultaneously set up an ASF monitor site at Fort Wadsworth, on Staten Island (a Locus LRSIIID 
with E-field antenna). This was set up temporarily for the Phase I data collection but then made 
into a long-term seasonal monitor site prior to the Phase II data collection. Our parallel paper in 
this proceedings [2], describes the monitor site equipment configuration. Figure 3 shows the 
antenna mount at that site and our technical support expert, Mark Wiggins, hard at work.  



    

Figure 3 – Temporal monitor site on Staten Island. 

The first data collection effort was in May 2006. The on-the-water portion consisted of a slow 
circuit of the harbor (at 5-6 knots) and measurements at 25 static locations; the on-the-land 
component consisted of 19 static locations. Figure 4 shows the relative locations of the static 
points, all around the upper harbor region (north of the Verrazano Bridge); Figure 5 shows the 
track of the slow circuit, mostly contained within the upper harbor (blue) with one trip outside the 
harbor on a second day of measurements (green). For reference, the directions to the 4 primary 
Loran stations are shown in this figure. 

 

Figure 4 – Phase I static data sites. 
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Figure 5 – Phase I dynamic data collection tracks. 

The second data collection effort occurred in August 2006. It included 12 static locations in the 
lower harbor (shown in Figure 6), repeated the circuit of the upper harbor from Phase I, and 
added slow cruises in the lower harbor. The Phase II tracks are shown in Figure 7 (the three 
distinct colors show the tracks from three different days of measurements).  

-74.05 -74 -73.95 -73.9 -73.85 -73.8 -73.75
40.35

40.4

40.45

40.5

40.55

40.6

40.65

 

Figure 6 – Phase II static data sites. 
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Figure 7– Phase II data collection tracks. 

The collected data (both static and dynamic) was post-processed to produce ASFs as follows: 

• First, the dynamic Loran TOAs are inverse filtered to remove the effects of vessel 
movement during the receiver averaging1. 

• Precise location for each data point is computed from the L1/L2 GPS pseudorange data 
with GrafNav software using data from the local CORS sites. The expected TOA is 
computed from this precise position (taking into account primary and secondary Loran 
factors). 

• The ASFs are calculated as the difference between the expected TOA and the inverse 
filtered TOAs. 

• Relative ASFs are calculated by removing the measured ASF at the Staten Island 
reference site (ASFrel = ASFboat – ASFSI). 

Figure 8 shows typical ASF data resulting from this computation on the Phase II data for Loran 
station Nantucket. In this figure we see relative ASFs (again, relative to the value at the monitor 

                                                             

1 This inverse filtering technique has been in use by the authors for over a year and although mentioned in 
our ILA 34 paper [4] it has not been previously documented. We analyzed the Locus Loran receivers used 
in our ASF measurement system and developed a model of the filtering done by the receiver. We then 
apply an inverse of this filter model to remove the receiver averaging and time lag.   



site) ranging from –1 to +0.7 µsec depending upon the ship’s position in the harbor. (The ASF is 
negative relative to the monitor site in the southern outer harbor area since the path from 
Nantucket to the ship is all seawater while the path to the monitor site travels partially over Long 
Island. At the northern end of the harbor, the additional land path of southern New England, when 
compared to the monitor site, results in positive ASFs.) 

 

Figure 8 – Typical relative ASF measurements. 

Grid Development 
In prior work, we have considered the generation of harbor ASF grids. Our first attempt [3] was 
to employ the BALOR software to predict ASFs on the Thames River in Connecticut (adjacent to 
the Coast Guard Academy) and to experiment with the resolution required to achieve HEA levels 
of accuracy. To do so, we first generated a very dense grid from the modeling software; a typical 
example is shown in Figure 9 for Loran station Nantucket. We then considered varying amounts 
of subsampling of this grid (and then interpolating back) to observe its effect on Loran 
performance. Figure 6 of that paper (reprinted below as Figure 10) shows the theoretical position 
performance (95%) versus grid point spacing. The conclusion was that a grid with approximately 
500 meter spacing should meet the HEA accuracy requirements. A typical coarse grid from this 
early work is shown in Figure 11. Unfortunately, the original BALOR predictions of the ASFs are 
insufficiently close to the true ASFs to make this method of developing the ASF grid reliable.  
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Figure 9  – ASF prediction on the Thames River using BALOR (from [3]). 

 

Figure 10 – Theoretical Loran position performance versus grid spacing (from [3]). 



 

Figure 11 – A typical ASF grid (from [3]). 

Since the BALOR predictions were seen as not being accurate enough, we turned to collecting 
and processing on-the-water data. In a second attempt at grid generation, we collected actual ASF 
data while slowly cruising on the Thames River, converting the data into ASF grids (at this point 
we did not employ a reference station; otherwise, the data collection effort was similar to that 
reported above). The results of this work were presented in [5]. The grid was generated as 
follows:  

• A priori, we located a 7-by-12 point grid on the river as shown by the red dots in Figure 
12 (reprinted from [5]). A second component of our prior work [3] suggested that such a 
grid size might be sufficient for the Thames River scenario. 

• We grouped data points to the nearest grid point. The color coding of the tracks in Figure 
12 attempts to show these groupings. For example, the red swath of track at the bottom 
right maps to the bottom right grid point; moving left, the green swath maps to the 
bottom row of the grid, second point from the right; etc. This mapping is better seen in 
Figure 13, a blow-up of a portion of Figure 12 (also reprinted from [5]).  

• The grid value is chosen as the median of the data points mapped to it. The median was 
chosen, instead of the mean, to limit the effects of outliers.  



 

Figure 12 – The 7-by-12 grid for the Thames River (from [5]). 

 

Figure 13 – A blow-up showing the Thames River mapping (from [5]).  



While this simple process yielded better grids than those developed from the BALOR model, the 
process still suffered from multiple limitations:  

• Some ASF grid values are missing – an example is the grid point in the left of center of 
Figure 13. This is, of course, due to no data being mapped to the grid points; while this is 
expected of land points, it’s disappointing for on-the-water grid locations.  

• There is no explicit correlation of ASF value at adjacent grid points. While we expect the 
ASF to be a smoothly (continuously) varying function of spatial position, our naïve 
mapping/median computation does not explicitly create this correlation.  

• The relative geometry of the data (i.e. its position relative to the grid point) once it is 
mapped to a grid point is not used in any way. While we would hope that data 
measurements are made uniformly on the region mapping to a grid point, this is almost 
never the case in practice. Typically, the data is strongly biased. For example, the yellow 
data points on the top, right of center portion of Figure 13 map to the grid point to the 
right of all of that data.  

Our current work seeks to mitigate these limitations. Before we get to the final results, we show a 
possible method using static measurements.  

Grid Creation – Static Data 

 

Figure 14 – Delaunay triangle ASF surface for Nantucket. 

Referring back to Figure 4, we have data collected at multiple on-land and on-water sites in the 
New York harbor area. First, we average the data to remove noise. At that point, a standard 
interpolation method is to create a series of flats on the triangles connecting adjacent points (so 
called Delaunay triangles). As an example, the result using the Nantucket component of our 
measured data appears in Figure 14. As this non-regular surface is difficult to interpret, we 
resample it to a uniform 0.005 degree spacing in latitude and longitude (approximately 500 meter 
spacing in the New York area); the Nantucket example of this easier to digest ASF surface plot 
appears in Figure 15. The coverage of this result on New York harbor is shown in Figure 16 in 
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which the light blue points show the full grid considered (a 25-by-31 uniform 0.005 degree grid); 
the dark blue points are those for which we were able to interpolate data. (Another possible 
option for static data that we have explored, but have no results on, is to apply universal kriging 
[6] to the data.) 

 

Figure 15 – Uniform resampling of the Delaunay ASF surface for Nantucket. 

 

Figure 16 – Coverage of the Delaunay ASF surface (dark blue dots) on the uniform 
grid (light blue dots). Vessel track in black with portions used for analysis in red. 
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To assess the quality of these interpolated static grids, we recomputed the Loran positions for two 
portions of one of the slow circuits of the upper harbor (shown in red in Figure 16 – these 
stretches were chosen as being in the center of our grid area, away from bridge structures that 
might impact performance). Specifically, we took the measured Loran TOAs along those tracks, 
removed a spatial ASF estimate at each point based on interpolating the grid, removed the 
temporal component estimated at Staten Island, computed the Loran position, and compared the 
result to the GPS position. The absolute position error versus time of day (in hours) along the 
track appears in Figure 17. In this figure, green marks the Loran performance; the magenta line 
shows the desired performance of 20 meters. To better assess the results of this test, we computed 
some statistics; Figure 18 shows the histogram of the position error and its corresponding 
cumulative distribution function (cdf). We note that the 95% performance was 26 meters; not 
good enough for HEA applications. We expect that the wide spacing of the static measurements 
accounts for much of this error.  

 

 

Figure 17 – Typical performance of the static ASF grid. 

 

Figure 18 – Statistics of the static grid performance. 

Grid Creation – Dynamic Data 
The primary purpose of this work was to mitigate the limitations of our Jan 2005 effort on the 
Thames River. While we cannot solve the missing data problem, we have developed a method 
based on standard bilinear interpolation that widens (doubles in both latitude and longitude) the 
area in which data impacts a grid value, that results in correlated ASF values on adjacent grid 
points, and employs the geometric position of the measurement relative to the grid point in the 
estimation method.  
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To understand the method, first recall the development of standard linear interpolation:  

Given the values of a two-dimensional function F(x,y) at rectangularly spaced 
grid points, xj and yk, we can estimate its value at an arbitrary location x,y by  
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In the general formulation, a and b are the relative horizontal and vertical position of the desired 
point x,y within the rectangular formed by the two closest values of xj and yk (see Figure 19). 
Bilinear interpolation first forms the pair of parallel horizontal (or vertical) line segments 
connecting the values of the function at these adjacent grid values, linearly interpolating each in x 
(or y), next forms the single vertical (horizontal) line connecting those two interpolated values, 
and finally interpolates on that line for the desired y (or x) value. 
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Figure 19 – Example of standard bilinear interpolation. 

Viewed from afar, interpolation is the reverse of our situation – interpolation requires the values 
at the grid points and finds the value at an arbitrary point while we have the values at (potentially) 
many arbitrary points and wish to find the values at grid points. To solve our problem, then, we 
turn the interpolation equation around yielding 

   

We interpret this as a linear equation in four unknowns (the values of F at the four grid points); 
the coefficients (depending upon a and b which are functions of the vessel location, from GPS) 
and the measurement F(x,y) are all known. Taking multiple measurements (at least 4) at distinct 
locations within the rectangle bounded by the four grid points yields sufficient simultaneous 
equations to enable a solution. Since we expect that the measurements (each ASF) are noisy, we 
prefer to take many data points and implement a least squares solution to the resulting set of over 
determined linear equations.  
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This “inverse interpolation” scheme addresses several of the limitations of our previous work on 
grid development: 

• Some ASF grid values are missing – while we can still suffer from this problem, 
measurements now play a role in four grid points, effectively doubling the density of grid 
points (or quadrupling the number of measurements used in a grid value estimate). For 
example, the center grid value in Figure 20 is solved for using all of the track points 
marked in green, not just those closer to that grid point than some other.  
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Figure 20  – Example of inverse bilinear interpolation. 

• Since each measurement is employed in solving for 4 grid points and adjacent grid points 
share common measurements (with different coefficients in the linear equations), there is 
now an explicit correlation of the ASF value at adjacent grid points. For example, the 
green points in the top right rectangle in Figure 20 are in the equations for the center grid 
point as well as those of the top center and middle right grid points 

• The relative location of the data directly impacts the resulting grid values through the 
values of a and b in each simultaneous equation.   

An example of solving for the grid from dynamic data for Loran station Nantucket appears in 
Figure 21 for a grid point spacing of 0.005 degrees, both Latitude and Longitude. The coverage of 
this grid appears in Figure 22 (again, as in Figure 16, light blue shows the full grid and dark blue 
the inverse interpolation grid). When comparing these results to that of the Delaunay grid in 
Figure 15 and Figure 16, this result looks quite sparse and limited. This is indeed so since only 
the on-the-water data from Figure 5, Figure 6, and Figure 7 are included in the calculation (the 
on-the-water static points are just a very slowly moving vessel). While we could include the on-
the-land points as well, the fact that they fall far from any other data would result in 
measurements clustered in one interpolation rectangle. Since such limited spread typically 
produces poor solutions of the equations, and hence poor estimates of the ASFs, we ignore those 
here. Further, the inverse interpolation solutions at the edges of the range of data generally 
overcompensate in the estimates (not having any data on the other side); hence, we erode the 
resulting grid region slightly to produce a cleaner set of values. And finally, while theoretically 
we could set the grid spacing at any value, the spread of points in the tracks from New York 
harbor limit us to grids of approximately 500 meters or larger. Smaller spacing results in 



interpolation cells without data and, hence, poor estimates as noted above. We are currently 
planning more extensive on-the-water surveying of the Thames River harbor and expect to report 
on the effects of inverse interpolation grid size in future publications.  

 

Figure 21 – The inverse interpolation ASF grid for Nantucket. 

 

Figure 22 – Coverage of the inverse interpolation ASF grid. 
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To assess the quality of these interpolated dynamic grids, we first repeat the experiment described 
above for static grids (the red track in Figure 22 which is the same track used previously). The 
absolute position error versus time of day (in hours) along the track for the dynamic grids appears 
in Figure 23; green marks the Loran performance, magenta the desired 20 meters. The statistics of 
this test appear in Figure 24. In this case the 95% performance was less than 15 meters; good 
enough for HEA applications.  

 

Figure 23 – Typical performance of the dynamic ASF grid. 

 

Figure 24 – Statistics of the static grid performance. 

As a second test of the inverse interpolation grids, we considered a track in the lower harbor 
(shown in red in Figure 25). Specifically, we developed ASF grids based upon part of the data set 
traversing the center and edges of the channel. Using the same convention as before, the dark blue 
triangles in Figure 25 show where grid values exist, the light blue are grid points on the uniform 
grid for which no data was available. We then processed TOAs from a separate track (from a 
different day, not used in the grid development) to assess Loran position performance. The 
absolute position error appears in Figure 26; the statistics in Figure 27. In this case the 95% 
performance was less than 10 meters! 
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Figure 25 – Lower harbor test: grid from one day and track from another. 

 

Figure 26 – Error performance of the lower harbor test. 

 

Figure 27 – Statistics of the lower harbor test. 
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Conclusions/Future 
After reviewing some prior work on ASF grid computation, we have introduced the inverse 
interpolation method which employs the precise position of survey data and adds correlation 
across the grid estimate. Further, we demonstrated that such grids can achieve the desired HEA 
performance level of sub-20 meter accuracy using a 500-meter grid. Open questions still exist on 
the required density of the grid and the number of data points necessary (per grid cell) to get 
reliable ASF estimates.  

Currently, we are involved in resurveying the Thames River area to attempt to answer the above 
questions. The computed ASF grids, and the results of a live test of navigating with the grids, will 
be described in early 2007.  
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